
Review

Impacts of Bt crops on non-target invertebrates and insecticide
use patterns

Steven E. Naranjo*

Address: USDA-ARS, Arid-Land Agricultural Research Center, 21881 North Cardon Lane, Maricopa, AZ 85238, USA.

*Correspondence: Email: steve.naranjo@ars.usda.gov

Received: 22 December 2008

Accepted: 27 January 2009

doi: 10.1079/PAVSNNR20094011

The electronic version of this article is the definitive one. It is located here: http://www.cababstractsplus.org/cabreviews

g CAB International 2009 (Online ISSN 1749-8848)

Abstract

The ubiquitous nature of Bacillus thuringiensis (Bt), a Gram-positive bacterium capable of producing

crystal proteins with insecticidal activity during sporulation, is now being mirrored in major crops

plants that have been engineered through recombinant DNA to carry genes responsible for

producing these crystal proteins and providing host plant resistance to major lepidopteran and

coleopteran pests. In 2007, the 11th year of commercial production, Bt maize and Bt cotton were

commercially produced on a total of �42 million hectares in 20 countries. Assessment of

environmental safety has been and continues to be a key element of transgenic crop technology.

This review focuses on two environmental elements, effects on non-target invertebrates and

changes in insecticide use patterns since the adoption of Bt maize and cotton. Meta-analyses of the

extant literature on invertebrate non-target effects reveals that the pattern and extent of impact

varies in relation to taxonomy, ecological or anthropomorphic guild, route of exposure and the

non-Bt control against which effects are gauged. Hazards identified in the laboratory may not

always manifest in the field and the minor negative effects of Bt crops demonstrated in the field

pale in comparison with alternative pest suppression measures based on insecticides. The efficacy

of Bt maize and cotton against major pest species has been associated with an estimated

136.6million kg global reduction in insecticide active ingredient used between 1996 and 2006

(29.9% reduction). Benefits vary by country and region and are heavily weighted towards cotton

production, which has historically been one of the largest users of insecticides in the world.

Keywords: Bt maize, Bt cotton, Bacillus thuringiensis, Integrated pest management, Biological control,

Environmental risk

Review Methodology: A number of sources were used to gather information for this review including CAB Abstracts and Current

Content (keyword search terms=transgenic & (Bt or Bacillus and thuringiensis)), as well as literature citations from numerous review

articles and books on the topic, many of which are cited in this review. Finally, the meta-database of Marvier et al. [1] served to identify

additional literature dealing with non-target issues. The literature search was current to late November 2008.

Introduction

The insecticidal properties of Bacillus thuringiensis (Bt) have

been known for over a century and commercial products

based on this organism have been available for 70 years,

occupying >90% of the bio-pesticide market [2]. Bt, a

Gram-positive bacterium capable of producing crystal pro-

teins with insecticidal activity during sporulation, is ubi-

quitous in the environment, and the genes coding for

these insecticidal proteins are now becoming ubiquitous

in major crop plants throughout the world via recombi-

nant DNA technology. Bt potatoes were first commer-

cially produced in the USA in 1995, but issues with

consumer acceptance led to their retraction from the

market after 5 years [3]. In contrast, Bt cotton was first

commercially produced in 1996 in Australia, Mexico and

the USA and its adoption and use has spread to six

additional countries. Bt cotton is currently grown on �14

million hectares worldwide, which represents �40% of all

cotton production globally (Table 1; [4]). Similarly, Bt
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maize, first commercially produced in the USA (1996) and

Canada (1997) is now grown on a total of �28 million

hectares in 15 countries representing �19% of global

maize production (Table 1; [4]).

Overall, genetically engineered (GE) crops with either

insect resistance, herbicide tolerance, or both traits, were

grown on �114.3 million hectares worldwide in 2007 [4].

GE soybean with herbicide tolerance was the leading

crop, comprising about 51% of the global GE crop area.

There are a number of Bt vegetable crops under devel-

opment and evaluation including broccoli, cabbage, cauli-

flower and eggplant [5]. Bt potatoes are likely to be

re-introduced, probably in Asia, Africa and Eastern

Europe, in the future [3], and Bt rice is being evaluated in

several countries [6]. Malone et al. [7] review potential

transgenic enhancements to crops based on non-Bt

approaches. At present, the only Bt crops being com-

mercially produced are maize and cotton.

Foliar-applied Bt products have been extensively eval-

uated for safety (see [2, 8, 9]), but the process of genetic

engineering along with the continual, season-long ex-

pression of Bt proteins in transgenic plants and other

biological and sociological issues have raised additional

concerns about their environmental safety and benefits

that continue to be addressed by researchers. An ex-

tensive base of literature has amassed and addressed

various aspects of environment risk including evolution of

resistance in targeted pests, genetic drift, effects on soil

structure and decomposition, effects on non-target organ-

isms and shifts in pest management strategies – mainly

insecticide usage patterns. A wealth of review, synthesis

and interpretive articles, and books, too extensive to

cite explicitly, have been written on these environmental

issues. This review will attempt to synthesize and gen-

eralize the literature bearing on invertebrate non-target

effects of transgenic Bt crops through meta-analyses of

extant studies, and provide an overview of changes in

patterns of insecticide use as a result of Bt crop produc-

tion worldwide. This approach will hopefully provide a

somewhat unique perspective that does not directly

duplicate the many excellent review articles, syntheses

and books already available (e.g. [2, 10–27]). For coverage

of the other environmental risk issues associated with GE

crops, the reader is directed to several recent reviews

on pest resistance and management [28], gene flow [29]

and soil ecosystem effects [30].

Bt Crops Within the Context of Integrated

Pest Management (IPM)

The current suite of commercially available Bt crops has

been engineered for resistance to several of the most

significant and most difficult pests to control. The target

pests for lepidopteran-active Bt maize are primarily the

European corn borer, Ostrinia nubilalis and several other

stem-boring pests such as Diatraea spp. and Sesemia non-

agroides; for coleopteran-active Bt maize, the target is

corn rootworm, Diabrotica spp. [31]. In the cotton system,

the primary targets are the bollworm/budworm complex

(Helicoverpa and Heliothis spp.), the pink bollworm,

Pectinophora gossypiella and other bollworms (Earias spp.)

[32]. The primary target of Bt potato when it was culti-

vated in the USA was the Colorado potato beetle,

Table 1 Summary production statistics for Bt maize and Bt cotton adopting countries, 2007

Country

Maize Cotton

Yield
(M kg)

Total ha
(1000s) % Bt

First Bt
production

Yield
(M kg)

Total ha
(1000s) % Bt

First Bt
production

Argentina 21 755 2838 67 1998 153 310 49 1998
Australia – – – – 134 65 92 1996
Brazil 51 589 13 827 0 2008 1602 1077 45 2005
Canada 10 554 1361 49 1997 – – – –
China – – – – 8055 6202 69 1997
Columbia – – – – 42 42 28 2002
Czech Republic 608 93 1.7 2005 – – – –
France 13 107 1481 1.3 1998 – – – –
Germany 3480 383 < 1 2000 – – – –
Honduras 555 362 < 1 2001 – – – –
India – – – – 5356 9554 66 2002
Mexico – – – – 135 110 52 1996
Phillippines 6730 2720 5 2003 – – – –
Poland 1640 262 < 1 2007
Portugal 646 117 3.2 1999 – – – –
Slovakia 675 158 < 1 2006 – – – –
South Africa 7338 2551 44 1997 11 15 85 1997
Spain 3647 365 23 1998 – – – –
Uruguay 210 50 44 2003 – – – –
USA 332092 35 022 57 1996 4181 4246 63 1996

Compiled from [4, 89, 109, 110]. See Hellmich et al. [31] and Naranjo et al. [32] for a summary of Cry proteins and events.
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Leptinotarsa decemlineata. Both maize, and especially

cotton, production are impacted by a wide range of ad-

ditional pests not affected by Bt proteins, many of which

can be yield limiting if left uncontrolled [31, 32]. Thus,

while Bt crops represent an important tactic for managing

critical key pests, they must be integrated into a more

comprehensive IPM programme in order to attain suc-

cessful management of the entire pest complex. Examples

of how this is being achieved have been recently detailed

for maize, cotton and other Bt crops that may

become available in the future [3, 5, 6, 31, 32].

The prevailing perspective is that Bt crops represent

host plant resistance [33] and as such provide a founda-

tion for suppressing key pests with little additional man-

agement input. Nonetheless, a fundamental component of

modern IPM is the use of sampling and economic thresh-

olds to determine the need for control actions. Clearly,

the decision to employ Bt crops for pest control is made

at planting time before the assessment of pest populations

is possible. In general, the decision to use Bt crops is

associated with production areas where key caterpillar or

beetle pests are a perennial threat. Cotton producers in

the San Joaquin Valley of California, USA, for example, do

not have issues with caterpillar pest and thus do not use

Bt cotton in that region [32]. Beyond recognition of his-

torical pest distribution patterns, the deployment of Bt

cotton by growers is based on their experience, their

aversion to risk, and the anticipated benefits and costs

of the technology. For caterpillar-resistant Bt maize, re-

searchers have developed an evaluation system (http://

www.Btet.psu.edu), which potentially allows growers to

make more informed decisions about use of the tech-

nology based on pest distribution, climate, and various

agronomic and economic considerations. Hellmich et al.

[31] suggest that the criticism that Bt crops do not con-

form to the basic prescriptive use principles of IPM sets a

double standard because use of resistant host plants

derived from conventional methods is viewed as a fun-

damental tactic in IPM. Further, tactics such as biological

control, another fundamental element of IPM, have been

facilitated by Bt crops through broad-scale reductions in

insecticide use (discussed in a later section). Ultimately,

the decision to employ Bt crops rests with the grower.

However, the growing number of traits (insect resistance

and herbicide tolerance) being engineered into cotton and

maize by the evolving crop biotechnology industry are

making it increasingly difficult for growers to choose

the best cultivars for their circumstances without also

deploying unnecessary traits [33]. This has consequences

for managing both pests and insecticide resistance.

Non-target Effects of Bt Crops

The potential impact of Bt crops, or GE crops in general,

on non-target organisms and biodiversity was a concern

well before the commercial production of these crops

[16] and continues to be a well-researched topic today.

As of late 2008, over 360 original research articles have

addressed non-target effects in a number of Bt crops:

mainly maize, cotton and potato. This does not include

the many field and laboratory studies conducted by in-

dustry as part of the registration process with regulatory

agencies such as the US Environmental Protection

Agency. Several studies were published before commercia-

lization of Bt crops and there was a steep upward trend in

research effort during the late 1990s through to 2006

(Figure 1). The pace of research appears to have lessened

a bit the last couple of years, but still remains significant. In

addition, as noted above, a number of review and synth-

esis articles have attempted to collate and summarize

these studies.

Risk Assessment Considerations

There continues to be debate about the most appropriate

approaches to assessing risk to non-target organisms in

transgenic crops ([18, 34–37]). Andow and Hilbeck [35]

outline and discuss three general approaches to non-

target risk assessment: (1) the ecotoxicology model,

which is most often associated with the tiered approach

used by regulatory bodies and focuses on acute toxicity;

(2) the non-indigenous species model, which focuses

on species that may be at risk from the introduction of a

non-indigenous species, in this case the transgenic plant;

and (3) the ecological model, which employs a tiered

approach, but focuses on representative species belonging

to functional groups that have both ecological and anthro-

pocentric relevance, and attempts to measure longer-

term fitness parameters based on potential routes of

Figure 1 Distribution of original studies in the scientific
literature addressing non-target effects of transgenic Bt
crops on invertebrates. The data for 1995 includes all stu-
dies up to that year. Compiled from CAB Abstracts, the
non-target database of Marvier et al. [1] and the author’s
personal database. Not included are a number of studies
performed by industry as part of the commercial registration
process with regulatory agencies
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exposure to toxins. Many regulatory bodies employ tier-

based methodology to assess risk and there is general

consensus in the scientific community that such an

approach is most suitable and appropriate. Nonetheless,

there remain differences of opinion on how best to

employ risk assessment systems based on differing

objectives and philosophies [36]. Most recently, Romeis

et al. [37] offered an international initiative for risk as-

sessment that capitalizes on some of the positive elements

of both ecotoxicological and ecological approaches in an

attempt to provide a general framework that adequately

characterizes risk, but does not unduly hamper the

introduction of important pest management technologies.

In their approach, a problem formulation process is used

to assess current knowledge and identify areas of concern

or uncertainly, which then establishes risk hypotheses that

are tested in a tiered approach. Further escalation through

more complex and realistic tiers is only justified if the null

hypothesis of no risk is rejected or other uncertainties

exist. Focus is placed on important functional groups of

non-target organisms, but based on practicality, the

authors recognize the need for representative surrogate

species in the testing process. Regardless of the process it

is ultimately up to decision-making bodies to determine the

balance of risks and benefits to society as a whole.

General Findings from Reviews and Syntheses

As noted, a large number of studies have addressed non-

target effects in GE crops and several reviews and

syntheses will be highlighted below. Recently, Lovei and

Arpaia [21] reviewed the impact of transgenic crops (Bt

and other) on a total of 32 species of natural enemies

as evaluated in laboratory studies. They summarized multi-

ple life history parameters and used a quasi-quantitative

(vote-counting) approach to categorize statistical sig-

nificance based on author-reported P-values. They con-

cluded that 30% of studies for predators and nearly 40%

of studies for parasitoids reported significant negative

effects on multiple life history characteristics (47.5 and

33.6% neutral for predators and parasitoids, respectively).

These values are inflated because of non-independence

of multiple traits measured on given species in the same

study. It also is important to note that over one-third of

the studies included in their analysis involved GNA pro-

tein (snowdrop lectin [Galanthus nivalis agglutinin]), which

is known to have broader toxicity than Bt [38]. Romeis

et al. [25] summarized much of the same laboratory data

for only Bt crops and concluded that such studies have

only shown negative effects on natural enemies when sus-

ceptible and sublethally compromised herbivores feeding

on Bt plant tissues or protein were offered as prey or

hosts and that no direct toxic effects of Bt have been

demonstrated. They further summarized a number of Bt

crop field studies and concluded that neither the abun-

dance of natural enemies nor their biological control

function differed between Bt and non-Bt crops. These

conclusions were based on author-reported statistics

with unknown statistical power and in the case of some

field studies amalgamated many different individual taxa.

Meta-analysis is one approach that can be used to

overcome the weaknesses of these types of vote-counting

syntheses by quantitatively combining the results of mul-

tiple studies using standardized effect sizes that take into

account the variability, sample sizes and the magnitude of

differences in comparative studies. Marvier and colleagues

collated the extant literature on the non-target effects of

Bt crops on invertebrates (mainly arthropods) in early

2006 (http://delphi.nceas.ucsb.edu/btcrops) and published

[1] the first general meta-analyses of 42 field-based

non-target studies focused on Bt maize and cotton. Their

analyses showed that the abundance of all non-target

invertebrates combined was slightly lower in Bt compared

with non-Bt crops, but that abundances were much higher

in Bt crops compared with non-Bt crops that had been

treated with insecticides, mainly to control Bt targeted

pests. They further concluded that taxonomic affiliation

did not appear to alter these general findings and that

it was unclear if the observed reductions of abundance in

Bt crops were the result of direct toxicity or changes in

prey/host availability in the case of natural enemies.

Wolfenbarger et al. [39] conducted a follow-up study

using a modified version (45 field studies) of the Marvier

et al. database that focused on partitioning the taxa into

ecological function guilds and examined maize, cotton and

potato. They found that predators as a group were slightly

less abundant in Bt cotton compared with non-Bt cotton

when neither received insecticide treatments, a pattern

largely driven by a reduced abundance of nabid predators

that was in turn likely the result of reductions in prey

represented by target pests. They also found that para-

sitoids were much less abundant in Bt maize compared

with unsprayed non-Bt maize, a pattern entirely caused

by reduced abundance of Macrocentris grandii, a specialist

exotic parasitoid of the primary Bt maize target, the

European corn borer. Other functional guilds (herbivores,

omnivores and detritivores) were unaffected in either Bt

maize or cotton in comparison with untreated non-Bt

controls. Predators and herbivores were slightly more

abundant in Bt potatoes compared with an unsprayed

non-Bt control and additional analyses of the potato meta-

data by Cloutier et al. [40] suggested that the increased

presence of sucking herbivores on Bt potato may directly

affect the predators feeding on these prey. Multiple

functional guilds were more abundant in all Bt crops when

compared with non-Bt crops treated with a variety of

insecticides for control of Bt targeted pests. For studies in

which both the Bt and non-Bt crops were sprayed with

insecticides for non-target prey (cotton and potato), the

abundance of all functional guilds were similar [39]. These

authors further examined effects on several individual

species that have been the topic of debate in the litera-

ture. For example, the effect of Bt proteins on Chrysoperla
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carnea has been intensely debated in the literature

[41–46], but the effect size based on field abundance of

this species was essentially zero in both cotton and maize

studies where no insecticides were used. In addition,

Wolfenbarger et al. [39] found no effects of Bt cotton on

Lygus spp. plant bugs, which have been noted (e.g. [47, 48])

or predicted [49] to be more problematic in Bt cotton.

Finally, Duan et al. [50] compiled an independent

database of 25 laboratory studies on the honey bee, Apis

mellifera, and a meta-analysis of these studies revealed that

Bt proteins found in either lepidopteran- or coleopteran-

resistant crops had no effect on the survival of larvae or

adults.

Reassessment of Extant Non-target Studies – A

Meta-analysis

Since the Marvier et al. [1] meta-database was developed

in early 2006, there have been dozens of new non-target

invertebrate studies published on Bt crops (see Figure 1).

For this review, the author has added a total of 39 new

laboratory-based studies and 14 new field-based studies

to a modified version of the original database (described

below). The laboratory-based database now includes

135 studies on nine Bt crops and 22 different Bt Cry

protein or protein combinations from 17 countries. The

field-based database contains 63 studies on five Bt crops

and 13 Bt proteins from 13 countries. Not surprisingly,

the bulk of all studies were from the USA (47%) and China

(13%) where Bt crop adoption rates have been very high;

however, very few if any non-target studies have come

from Argentina, Canada and India (4% collectively), where

adoption of Bt crops also has been high. In Europe, a

comparatively large number of studies have come from

Switzerland (9%), where there is no commercial pro-

duction of Bt crops, followed by Spain, France and the UK

(11% collectively). The vast majority of studies have

focused on Bt maize and cotton, both commercially grown

since 1996; many fewer studies were available on Bt

potato that was grown for only 5 years in the USA, or rice

and eggplant that are not presently produced commer-

cially. A summary of the updated database is provided in

Table 2 and a full listing of references included in the

database is provided in the Further Reading section.

Methodology

Following the standards established by Marvier et al. [1],

studies included in the database were selected based on

the following criteria: (1) crop plants that were genetically

modified to express one or more Cry proteins from Bt

(three field studies also include vegetative insecticidal

proteins [Vip] from Bt); (2) studies that measured the

effect of the Bt crop or pure Bt Cry proteins on some

aspect of the life history or abundance of non-target in-

vertebrate taxa relative to a non-Bt control; and (3) were

published in English. An additional criterion used to

develop the updated and modified database used here is

that studies had to have provided some measure of var-

iance (SEM, SD) and sample size along with means on

reported characteristics. This was necessary to calculate

the weighted effect-size estimator used in this analysis

(see below). A surprising number of studies did not

provide measures of variance in the original database [39]

and several new field and laboratory studies were not

added to the new database as a result of these omissions

by study authors. Finally, the issue of independence in the

dataset is critical to the conduct of a robust meta-analysis.

Both Marvier et al. [1] and Wolfenbarger et al. [39]

describe the screening process and analytical methods

used to eliminate non-independent data and analyses and

those rules were applied to the 53 additional studies

added here.

The meta-analyses described here used Hedges’ d, a

weighted mean effect size estimator that is calculated as

the difference between an experimental (Bt) and control

(non-Bt) mean response divided by a pooled standard

deviation and multiplied by a small sample size bias cor-

rection term [51, 52]. In essence, the effect size is a stan-

dardized measure that accounts for levels of variation and

replication in individual studies and can be used in analyses

independent of the original experiment and its associated

interpretations. In analyses, the effect size is then weigh-

ted by the reciprocal of the sampling variance [51]. The

effect size was estimated such that a negative effect size

would indicate either a lower abundance in field studies or

a lower performance (slower development, lower survival

or fecundity) in laboratory studies with the Bt crop or Cry

protein compared with the non-Bt control, while a posi-

tive effect size would indicate the opposite. All analyses

were performed using Meta-Win [52].

Meta-analyses of laboratory studies

With the exception of the honey bee meta-analysis dis-

cussed above, laboratory studies in the database have not

yet been examined through meta-analysis. Many inter-

esting questions could be addressed with the data, but the

focus here is on comparing and contrasting generalized

effects when organisms are exposed directly to Bt plant

tissues (including pollen) or pure Cry protein (bi-trophic),

or in the case of natural enemies, through their prey or

hosts that have fed on Bt plant tissues or Cry proteins in

diets (tri-trophic). Because these represent very different

routes of exposure and because prey or host-mediated

quality issues are known to affect tri-trophic interactions

(e.g. [53–55]), these exposure routes were examined

separately. Further, the emphasis here is on general

patterns relative to Bt proteins and so studies on both

lepidopteran-active and coleopteran-active proteins have

been pooled.

When non-target invertebrates were exposed to Bt

proteins directly through either plant tissues or pure pro-

teins in artificial diets, responses were variable depending

on the life history trait measured and on the guild into
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which the organisms were classified (Figure 2). Within the

natural enemy group predators showed a slight but sig-

nificant reduction in developmental rate when exposed

to Bt proteins directly compared with non-Bt controls.

Conversely, Bt proteins had no affect on survival or re-

production of either predators or parasitoids. Herbivor-

ous taxa that represent pests in cropping systems, but

are not the specific target of Bt crops, showed varying

responses depending on taxonomic affiliation (Figure 2).

‘Non-susceptible’ pests not belonging to the orders

Lepidoptera or Coleoptera and exposed to either lepi-

dopteran-resistant or coleopteran-resistant crops, res-

pectively, were unaffected by Bt proteins. In contrast,

‘susceptible’ pests belonging to the targeted taxonomic

orders showed significant reductions in developmental

rates and survivorship when exposed to Bt proteins

relative to non-Bt controls (Figure 2). Too few studies in

this group were available to examine effects on repro-

duction. Thus, even though a particular pest may not be

considered a target of Bt crops from a labelling standpoint,

these species as a group appear to be sufficiently sus-

ceptible to Bt proteins to result in lowered life history

performance. The valued arthropod category included

insect pollinators, charismatic butterflies (e.g. monarchs,

swallowtails) and moths of economic importance (e.g. silk

moths). Pollinators were not affected by Bt proteins and

reflect the findings of Duan et al. [50] who used a larger

dataset based solely on honeybees. Conversely, both the

developmental rates and survival of valued herbivores

were significantly lower when exposed to Bt proteins

directly (Figure 2). This group was dominated by the

monarch butterfly, Danaus plexippus, but also included

Table 2 Summary of laboratory-based and field-based studies used in the meta-analyses presented in this review

Laboratory-based Field-based

No. Studies1 135 63
No. Observations 871 3544
Crops Cotton Maize Cotton

Potato Broccoli Maize
Rice Cabbage Potato
Eggplant Canola Rice
Tobacco Eggplant

Bt proteins2 Cry1A Cry2A Cry9C Cry1A Cry1Ab & 1Ac
Cry1Aa Cry2Ab Cry1Ab & Cry1Ab Cry1Ac & 2Aa
Cry1Ab Cry2Ac 1Ac Cry1Ac Cry1Ac & 2Ab
Cry1Ac Cry2B Cry1Ab & Cry3A Cry1Ac & CpTI
Cry1B Cry3A 2Ab Cry3B Cry1Ab & Vip3A
Cry1Ba Cry3B Cry1Ac & Cry3Bb Vip3A
Cry1C Cry3Bb CpTI Cry3Bb1
Cry1F Cry3Bb1 Cry1Ac & 1C

Cry1Ac & 2Ab

Countries Bulgaria Japan Australia Hungary
Canada New Zealand Brazil India
China Philippines China Italy
Czech Republic South Korea Czech Republic Spain
Denmark Spain Denmark Switzerland
France Switzerland France USA
Germany UK Germany
India USA
Italy

Study types Pure protein exposure Bt vs. non-Bt crops (both w/o insecticides)
Bi-trophic exposure Bt vs. non-Bt crop w/insecticides
Tri-trophic exposure Bt vs. non-Bt (both w/insecticides)

Parameters Development/Growth Abundance
Survival/Mortality
Reproduction
Consumption/Nutrition

No. Phyla 3 2
No. Classes 8 6
No. Orders3 16 21+
No. Families3 43 139+
No. Genera3 79+ 172+
No. Species3 99+ 185+

1The studies included in the database are noted in the Further Reading section.
2Proteins as reported by study authors; CpTI=cowpea trypsin inhibitor, Vip=vegetative insecticidal protein (from B. thuringiensis).
3The + indicates that not all taxa were identified to the specified level.
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lepidopteran family members of Papilionidae, Saturniidae,

Lycaenidae and Bombyxidae. This result is not surprising

given the taxonomic affiliation of these species, but it

should be noted that a thorough analysis of monarch

butterfly showed that risk to this species in the field was

negligible [56]. The remaining studies on detritivores

and other herbivores and omnivores generally showed

no affects of Bt proteins with the exception of signifi-

cantly higher survival of detritivores as a group when

exposed to Bt proteins, compared with a non-Bt control

(Figure 2).

Species in the third trophic level can be exposed to

plant-based constituents both through consumption of

plant foliage, sap, pollen and nectar [57] as well as tri-

trophically through consumption of herbivorous prey and

hosts that have been exposed to these plant constituents.

Many studies have examined the effects of Bt proteins on

predators and parasitoids through this tri-trophic pathway

using prey or hosts that are not susceptible to Bt proteins

(high quality) and those that are sublethally affected in

some manner after exposure to Bt proteins (low quality).

High host or prey quality was generally determined by

taxonomic affiliation relative to the Bt proteins examined,

but several studies also used resistant lepidopteran hosts,

which were completely unaffected by Bt proteins [54, 55,

58, 59]). Analyses revealed a clear and significant impact of

host quality on the performance of parasitoids (Figure 3).

Developmental rates, reproduction and survival of para-

sitoids as a group were reduced when they were provided

with hosts that had been compromised by exposure to

Bt proteins. When provided with high-quality hosts, para-

sitoid development and survival were equivalent on hosts

exposed or not exposed to Bt proteins. There was even a

slight increase in reproductive performance when para-

sitoids were provided with high-quality hosts exposed to Bt

proteins, compared with non-Bt controls. Predators as a

group showed slightly lower survivorship when provided

compromised (low-quality) prey exposed to Bt proteins,

but slightly faster developmental rates when provided

unsusceptible (high-quality) prey exposed to Bt proteins

(Figure 3). All other predator life history characteristics

were unaffected by Bt proteins regardless of prey quality.

Figure 2 Meta-analyses of laboratory studies examining non-target effects of transgenic Bt crops on four general cate-
gories of invertebrates when organisms were directly exposed to either Bt proteins via transgenic plant materials or pure Bt
proteins in artificial diets (bi-trophic exposure). Numbers above or below the bars indicate the total number of observations
for each measured biological parameter and error bars denote 95% confidence intervals; error bars that do not include zero
indicate significant effect sizes (*, P< 0.05). Negative effect sizes are associated with compromised performance on Bt
compared with non-Bt controls. Natural enemies include arthropod predators and insect parasitoids; non-target pests
includes those that are potentially susceptible (taxonomically related at the order level to the target of the Bt crop) or
putatively non-susceptible based on taxonomic order. Valued arthropods include insect pollinators and herbivores with a
subjective human or economic value (e.g. monarch and swallowtail butterflies, silk moths, caddis flies). The “other” category
includes detritivores and other miscellaneous herbivores and omnivores not defined in other categories (e.g. daphnia,
snails)
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Meta-analyses of field studies

In general, field studies were structured in such a way that

three different and independent hypotheses could be

tested. One type of experiment compared Bt with non-Bt

fields, neither of which received any additional insecticide

treatments and allows testing of the hypothesis that the

proteins or other characteristics in the Bt plant affected

arthropod abundance either directly or indirectly. The

second set of studies that compare unsprayed Bt crops

with non-Bt crops receiving insecticide treatments tests

the hypothesis that arthropod abundance is influenced by

the method used to control the pest targeted by the Bt

crop. A third comparison, in which both the Bt and the

non-Bt crop were treated with insecticides, tests the

hypothesis that arthropod abundance is affected when

other pests in the system not suppressed by Bt require

additional insecticide treatments. This latter scenario is

common for cotton, which harbours a large diversity of

potential pests [32].

The addition of 14 new studies did not qualitatively

alter the patterns for ecological functional guilds observed

by Wolfenbarger et al. [39], regardless of the hypothesis

tested (Figure 4A–C). This result was predicted by

Wolfenbarger et al. [39], based on a cumulative meta-

analysis that allows patterns in effect sizes to be examined

over time as new studies are added. For all groups except

parasitoids, they found that the trajectory for effect size

was clear and unlikely to be altered by additional studies

based on the same suite of Bt proteins. Field studies on

parasitoids have been limited in all crops except maize;

however, even there most of the observations have been

on M. grandii, an exotic specialist of European corn borer.

Additional field studies on a broader array of parasitoid

taxa in both maize and cotton may be warranted given the

results of laboratory studies (see Figure 3). However, it

should be noted that the target pest, and in turn its

specialist parasitoid, would be affected by any pest control

method. Analyses of two crops, rice and eggplant, not pre-

viously reported indicates that no arthropod functional

guild was affected by Bt in comparison with an unsprayed

control (Figure 4A). The number of studies on these

crops is still very limited and there was insufficient data to

test hypotheses regarding the other types of control treat-

ments.

From a pest management perspective, two of the key

non-target concerns of Bt crops has been effects on

potential biological control agents and on other pests in

the system that are not specifically targeted by the trans-

gene products. If the data are now organized to examine

these two groups explicitly, slightly different patterns

emerge (Figure 5). Natural enemies are significantly less

abundant in Bt cotton compared with untreated non-Bt

cotton, but much more abundant in Bt cotton when

compared with non-Bt cotton sprayed with insecticides.

The large differential for parasitoids in unsprayed maize

(Figure 5A) is moderated by the abundance of predators

in this crop making the overall effect of Bt maize on nat-

ural enemies insignificant. Keep in mind that the parasitoid

group is largely represented by M. grandii and that effects

on other parasitoids in both Bt maize and cotton have not

been well documented in the field. The abundance of the

subset of herbivores that represent pests putatively non-

susceptible to Bt proteins in the cropping systems exam-

ined is in fact unaffected by most Bt crops. Non-target

pests are higher in Bt potato, and as noted, Cloutier et al.

[40] suggests this is largely a result of higher populations

of sucking pests such as aphids. Insecticides applied to

non-Bt crops for pest control is effective, leading to

higher non-target pest populations in unsprayed Bt crops

(Figure 5B). General predator-to-prey ratios were exam-

ined by Wolfenbarger et al. [39], based on studies in which

both predators and herbivores were measured in the

Figure 3 Meta-analyses of laboratory studies examining non-target effects of transgenic Bt crops on arthropod predators
and insect parasitoids that were exposed to Bt proteins via prey or host that had fed on either transgenic plant materials or
pure Bt proteins in artificial diets (tri-trophic exposure). Prey or hosts that were partially susceptible to Bt proteins and thus
experienced reduced vigour were considered low quality prey. Numbers above or below the bars indicate the total number of
observations for each measured biological parameter and error bars denote 95% confidence intervals; error bars that do not
include zero indicate significant effect sizes (*, P<0.05). Negative effect sizes are associated with compromised perfor-
mance on Bt compared with non-Bt controls
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same study. They found that predator-to-prey ratios were

unaffected by either Bt crops or insecticide use with the

exception that higher ratios were noted in Bt maize when

compared with insecticide-treated non-Bt maize.

Comparing laboratory and field studies

The correspondence of laboratory and field studies is

somewhat difficult to gauge as different taxa were focused

upon, protein exposures in laboratory studies were more

controlled and often at levels in excess of field concen-

trations, and field abundance integrates and is governed by

many interacting and uncontrollable factors. Even with

these limitations there are some general patterns worthy

of note. Within natural enemy guilds, laboratory studies

showed negative effects of Bt on development and survival

of predators and parasitoids through bi-trophic and/or

tri-trophic exposure, both realistic routes of exposure in

field populations. In turn, predator abundance was slightly

lower in Bt cotton (but not Bt maize, rice or eggplant) and

parasitoid abundance was much lower in Bt maize (but

not in Bt cotton, rice or eggplant). Clearly, changes in

developmental rates and survival would impact population

growth, but the lack of consistent effects in the field

would suggest that other variables are involved, most

notably reductions in target prey or hosts. ‘Valued her-

bivores’ were not examined in the field studies examined

here and very few studies included pollinators making

analyses of these groups problematic [but see 56]. The

enhanced survival of detritivores as a group in laboratory

studies was not reflected in field abundance studies.

Finally, the finding of no effect of Bt on non-susceptible,

non-target pests in the laboratory is consistent with the

lack of changes in abundance in Bt crop fields, compared

with non-Bt controls. The laboratory studies in the data-

base are representative of early tier tests required by

various regulatory agencies (several studies were in fact

tests provided by industry) to establish the potential for

hazard. Some hazards to Bt proteins have indeed been

demonstrated in laboratory studies, but in general their

manifestation in the field has been limited based on avail-

able studies. Further, more detailed analyses to examine

the ability of these laboratory tests to predict non-target

Figure 4 Meta-analyses of field studies examining the abundance of non-target invertebrates in transgenic Bt crops by
ecological functional guilds. (A) Bt crops compared with non-Bt crops, neither treated with insecticides; (B) Bt crops
compared with non-Bt crops treated with insecticides; (C) Bt crops compared with non-Bt crops both treated with insecti-
cides. Numbers above or below the bars indicate the total number of observations and error bars denote 95% confidence
intervals; error bars that do not include zero indicate significant effect sizes (*, P<0.05). Negative effect sizes are associated
with lower abundance on Bt crops compared with non-Bt controls

http://www.cababstractsplus.org/cabreviews

Steven E. Naranjo 9



risk in the field is on-going (Duan, Lundgren, Naranjo and

Marvier, unpublished).

Overall, these meta-analyses are instructive in provid-

ing a more quantitative synthesis of the extant non-target

data for Bt crops. Nonetheless, the interpretations de-

rived are only as sound as the available data and several

limitations have been noted relative to field studies of

parasitoids, pollinators and arthropods of special human

interest, and to studies on non-maize and cotton systems.

Published studies vary in quality and comprehensiveness,

particularly field studies. Several studies were rather in-

clusive in the taxa examined (e.g. [60–65]), while other

studies focused on particular functional guilds such as

predators (e.g. [66–70]), herbivores [23, 71] or detriti-

vores [72, 73]. Some studies were conducted over mul-

tiple sites and years, while others for only a single year.

Wolfenbarger et al. [39] examined the sensitivity of field-

based meta-analysis to several experimental design issues

including plot size, study duration, total sampling dates

and found no consistent trends in effect sizes. They also

noted no publication bias in field studies, indicating that

negative as well as positive studies were reported equally,

and they found no undue influence by individual studies

with large numbers of observations. A similar analysis

here of publication bias for the laboratory studies also

suggests no publication bias. Clearly, field studies have

been more inclusive taxonomically (see Table 2) than

laboratory studies, but they have also tended to focus on

arthropods, primarily insects and arachnids in crop fields.

Whether this breadth of coverage is sufficient to docu-

ment effects on biodiversity within agroecosystems is

unknown and preliminary studies like Rosi-Marshall et al.

[74] point to the potential for off-site effects. Nonethe-

less, the weight of considerable data from the field points

to a consistent conclusion that Bt crops have only minor

effects, if any, on a large number of taxa that are dwarfed

in comparison with alternative pest control measures

such as broader-spectrum insecticides.

Figure 5 Meta-analyses of field studies examining the abundance of non-target arthropods in transgenic Bt crops within a
pest management context. (A) Bt crops compared with non-Bt crops, neither treated with insecticides; (B) Bt crops com-
pared with non-Bt crops treated with insecticides. Numbers above or below the bars indicate the total number of obser-
vations and error bars denote 95% confidence intervals; error bars that do not include zero indicate significant effect sizes
(*, P< 0.05). Negative effect sizes are associated with lower abundance on Bt crops compared with non-Bt controls. Natural
enemies include arthropod predators and insect parasitoids, and non-target pests include those that are putatively non-
susceptible to Bt crops based on taxonomic order (i.e. non-Coleopteran or Lepidopteran pests relative to the target of the
crop)
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Effects on Biological Control Function

One of the greatest concerns regarding Bt crops, or any

pest control technology, from an IPM perspective is their

impact on biological control, a critical ecosystem service

that suppresses many potential pests in agricultural sys-

tems. This concern is emphasized by the large number of

both laboratory and field non-target studies that have

focused on arthropod natural enemies. While examina-

tion of effects of Bt proteins on life history characteristics

in the laboratory and ultimately population density in the

field are essential topics of investigation, perhaps more

critical are impacts on biological control function – rates

of predation and parasitism and effects on pest dynamics.

However, relatively few studies have examined biological

control function in the field. Schuler et al. [58] demon-

strated in field simulators that Bt transgenic rape did not

affect parasitoid/host interactions between Myzus persicae

and its endoparasitoid Diaeretiella rapae or the ability of

the parasitoid to suppress aphid populations. No differ-

ences in proportional parasitism of various aphid species

between Bt maize and non-Bt maize were noted by Pons

and Stary [75]. Predictably, Bourguet et al. [76] and

Manachini [77] observed lower levels of proportional

parasitism on the target European corn borer by specialist

tachinid parasitoids in Bt compared with non-Bt corn,

while Siegfried et al. [78] found reduced proportional

parasitism by two specialist exotic parasitoids, M. grandii

and Eriborus terebans, in corn borer collected from Bt

maize. However, Orr and Landis [79] reported equal

levels of proportional parasitism and predation of natural-

deposited corn borer eggs, and parasitism of sentinel

larvae by M. grandii and E. terebans was similar in Bt and

non-Bt maize. Likewise, rates of predation on sentinel

corn borer egg masses were similar in Bt and non-Bt

sweet maize [68]. Predation on sentinel pink bollworm

(target pest) egg masses [80, 81] and sentinel pink boll-

worm pupae [81] were the same in both Bt and non-Bt

cotton. Additional field life-table studies on another key

cotton pest, Bemisia tabaci, demonstrated that marginal

rates of both parasitism and predation on nymphs were

equivalent in Bt and non-Bt cotton [81]. This study also

reported no changes in predator to prey ratios for either

B. tabaci or Lygus hesperus, another key pest in western

USA cotton systems, neither of which is susceptible to Bt

cotton. Interestingly, this biological control function was

sustained despite a �20% reduction in the abundance of

five common generalist predators in Bt cotton (likely

caused by reduction in prey targeted by Bt cotton)

demonstrated in a companion 5-year study [69]. Finally, in

studies conducted in commercial fields where both Bt and

non-Bt cotton received differing insecticide applications,

predation on sentinel Helicoverpa zea (target pest) eggs

was higher in Bt fields at two field sites and unchanged at a

third in the southeastern USA [82]. Overall, these studies

suggest an expected general reduction in parasitism by

specialists of Bt-targeted pests probably due to host

reduction, but no influence of Bt crops on the biological

control activity of primarily generalist arthropod pre-

dators, even if population densities of some species are

reduced in Bt fields. In general, Bt crops appear compatible

with biological control and may even enhance the effect of

natural enemies within an IPM framework [83].

Insecticide Use Patterns

There has been considerable effort made in attempting to

estimate the economic and environmental costs and

benefits associated with GE crop production, and Bt crop

production in particular, compared with conventional

production systems (see reviews by [17, 84–86]). Of

special interest has been the changing dynamics of insec-

ticide use patterns associated with the increasing adoption

of Bt crops by growers worldwide. In general, the culti-

vation of Bt maize and cotton has led to a reduction in

insecticide use that has been realized by both large- and

small-scale farmers [87]. This has been particularly

important in countries such as China and India where

there are millions of small-scale farmers. However, there

are major differences in reductions between Bt cotton and

Bt maize that are related largely to the respective pest

complexes and the degree to which the Bt trait has

replaced insecticide applications as a pest control mea-

sure.

Insecticide Use in Cotton

Cotton producers are among the largest user of insecti-

cides in the world [87] and the crop harbours dozens of

pests of which caterpillars are the most significant [32].

Brookes and Barfoot [85] have compiled perhaps the

most comprehensive estimates of the impact of GE crops

on pesticide use, crop production, economics and other

environmental variables available over the past few years,

based on comparative farm-level data in adopting coun-

tries. Their analyses for the period 1996–2006 estimate

that Bt cotton production has reduced the total volume of

insecticide active ingredient by 128.4 million kg globally,

representing an overall reduction of 22.9%, the largest

reduction in pesticide use by any GE crop. They further

estimate that the environmental toxicity of the insecti-

cides used, as measured by the environmental impact

quotient (EIQ; [88]), has been reduced by 24.6% over this

11-year period. Reductions in the EIQ range from 33, 24

and 20% in China, Australia and the USA, respectively, to

between 5 and 8% for the remaining Bt cotton adopting

countries, including India which now grows the largest

amount of Bt cotton in the world (see Table 1). None-

theless, Brookes and Barfoot [85] estimate that the ratio

of benefits in developing versus developed countries

relative to reductions in insecticide EIQ is 6.8:1.
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In Australia and the USA where insecticide use patterns

are closely followed by the industry more detail is

available. The use of single gene Bt cotton (IngardTM) in

Australia between 1996 and 2004 resulted in 59% fewer

applications and a 44% reduction in insecticide active in-

gredient compared with conventional cotton production

[87]. From 2002 to 2006, the use of dual gene Bt cotton

(Bollgard IITM), which has been the only Bt cotton grown

in Australia since 2004, has been associated with an 85%

reduction in sprays and an associated 65–75% decrease in

insecticide active ingredient. Overall insecticide use on

cotton for all pests in the USA has declined over the past

two decades. Based on average use during the 10 years

before Bt cotton and the 11 years since adoption, the

number of applications has decreased by about 40% [89].

This pattern cannot be completely attributed to Bt cotton

as other factors are involved, including the introduction

of newer and more effective insecticides, the near eradi-

cation of the boll weevil (historically one of the most

significant pest of cotton) and better overall IPM practices

[90]. Several pest groups, mainly plant bugs and stink

bugs, have increased in prominence since the adoption

of Bt cotton, mainly as a result of the reduced use of

broad-spectrum sprays for caterpillars (see [32] for a

discussion). Sprays for the major caterpillar pests have

declined to an average of 0.79 per ha over the past 11

years (57.4% reduction), while those for the plant bug,

Lygus spp., have increased to an average of 0.61 (74%

increase). Insecticide applications to control stinkbugs

were not tracked prior to 1992, but appear to have in-

creased from 1996 to 2003 and then stabilized at around

0.33 applications per ha.

In China, the largest producer of cotton in the world,

the number of insecticide applications is estimated to have

been reduced by 59–66% resulting in a 61–80% reduction

in total insecticide volume, compared with conventional

production [91–93]. Likewise, in India it is estimated that

the number of insecticide applications has been compara-

tively reduced by 38–42% and the volume of active in-

gredient has been reduced by 50–70% [94–96]. These

figures vary within these vast countries with differing pest

issues and production practices in different regions, making

generalizations difficult [86, 87]. For example, based on

farmer surveys in Northern China, Yang et al. [97] found

that many growers continued to protect Bt cotton from

pests much as they would conventional cotton, resulting

in a large number of insecticide applications against the

cotton bollworm that were probably unnecessary. How-

ever, those farmers trained in IPMmethods realized greater

reductions in insecticide use compared with those without

an understanding of IPM principles [97]. Additional issues

with black market seed of questionable quality [98] and the

results of several alternative economic modelling analyses

[99, 100] suggest that the benefits may not be uniformly

positive. In South Africa, estimates suggest benefits to both

small-scale dryland and large-scale irrigated production,

with a comparative 40–66% reduction in applications and

a 25–70% reduction in insecticide volume [101–105].

Insecticide applications in Argentina and Mexico have been

estimated to have dropped by about 50% [106, 107].

Insecticide Use in Maize

Reductions in insecticide usage in maize systems have

been much less dramatic compared with cotton. This is

mainly because relatively few insecticide applications

focused on the main target of Bt maize, the European corn

borer, because such applications are generally ineffective

[31]. Bt maize resistant to corn rootworms has only been

available since 2003 and even then does not have the level

of efficacy common in the lepidopteran-resistant events.

Thus, their adoption has been limited. Nonetheless, new

events are being introduced and the potential benefit of

using Bt maize for rootworm control is huge because soil

insecticides applied against this pest complex represent

the largest single use of insecticides in the USA [108].

Based again on comparative farm-level data in adopting

countries, Brookes and Barfoot [85] estimate that

between 1996 and 2006 the use of Bt maize has been

associated with an 8.2 million kg reduction in insecticide

active ingredient and a 5.3% reduction in the EIQ. Re-

ductions in the EIQ in other adopting counties have ran-

ged from 60% in Canada, 33% in Spain, 26% in South

Africa and 0% in Argentina. Estimated reductions in

insecticide use in Argentina, South Africa, Spain and the

USA are 0, 10, 63 and 8 %, respectively (see [86]). Also in

contrast to Bt cotton, the ratio of benefit relative to EIQ

in developing versus developed countries is estimated at

1:55.5 [85]. This reflects the large production of Bt maize

in developed North American countries and the lack of

benefit estimated for Argentina, a large maize-producing

country. Bt maize was approved for commercial produc-

tion in Brazil in 2008 and is being assessed for production

in China, so the benefits in insecticide reduction are likely

to grow in the future, particularly for developing nations.

The reader is directed to Fitt [87] and Qaim et al. [86]

for a more detailed discussion of patterns of insecticide

use and an overall economic assessment of Bt crops

worldwide.

Conclusion/Summary

The production of Bt crops has grown from the cultiva-

tion of a few million hectares in three countries in 1996 to

�42 million hectares in 20 countries as of 2007. Bt crops

represent an important tactic in the IPM toolbox, pro-

viding effective control of certain key pests through host

plant resistance, and contributing to the overall develop-

ment of robust IPM systems. The assessment of envir-

onmental risk, including the evolution of resistance,

genetic drift through gene flow, effects on soil structure

and decomposition, effects on non-target organisms,
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and shifts in pest management strategies, has been and

continue to be topics of research and debate centred

around transgenic crop technology. This review has

focused on invertebrate non-target effects and changes in

patterns of insecticide usage with the adoption of Bt

crops. Over 360 original research articles have been

published as of late 2008 that address non-target impacts

of Bt crops on invertebrate organisms, mostly arthropods.

General patterns from the extant literature were exam-

ined through meta-analyses of 135 laboratory-based non-

target studies and 63 field-based studies. Collectively,

laboratory studies have identified negative effects of Bt

crops on several life-history characteristics within various

taxonomic, functional and anthropomorphic groups when

organisms are exposed directly to Bt proteins in plant

tissues or through artificial diets. Some of these effects

were expected based on the taxonomic affinity of the

non-target organisms to the groups targeted by the Bt

crops. In studies exposing natural enemies to Bt intoxi-

cated prey or hosts via tri-trophic pathways, the quality of

the prey or hosts was an important determinant of ob-

served effect, with negative effects being associated with

low quality, sublethally compromised prey or hosts. These

effects disappear with unaffected, high quality prey or host

indicating that host-mediated effects and not direct toxi-

city are involved. Collectively, few harmful non-target ef-

fects of Bt crops have been demonstrated in field studies,

and in general greater levels of hazard have been identified

in laboratory studies than have been manifested in the

field. This may be explained partially by the fact that dif-

ferent taxa were examined in laboratory and field studies,

protein exposures in laboratory studies were more

controlled and often at levels in excess of field concen-

trations, and the fact that field abundance integrates and is

governed by many interacting and uncontrollable factors,

including prey and host abundance. The non-target effects

of insecticides for control of target and non-target pests

are much greater than Bt crops alone. Meta-analyses also

point to gaps in knowledge of certain functional guilds,

especially in field studies.

Field studies have demonstrated expected reductions

in biological control function for specialist parasitoids of

target pests in Bt maize systems, but no studies have

shown any change in levels of predation of either target or

non-target pests between Bt and non-Bt crops even when

population densities of some predator species are lower

in the Bt crop (e.g. [81]). Overall, the use of Bt crops has

the potential to enhance the role of biological control in

IPM systems.

The efficacy of Bt maize and cotton against major pest

species has been associated with an estimated 136.6 mil-

lion kg global reduction in insecticide active ingredient

used between 1996 and 2006 (29.9% reduction). These

benefits vary by country and region and are heavily

weighted towards cotton production, which has histori-

cally been one of the largest users of insecticides in the

world. Reduction in the vast quantities of soil insecticides

used for control of corn rootworms is expected as

coleopteran-resistant maize adoption grows in the future.

Scientific interest and debate will continue in the area of

environmental safety as new countries adopt GE crop

technology and as new biotech crops are developed and

cultivated.

References

1. Marvier M, McCreedy C, Regetz J, Kareiva P. A meta-analysis

of effects of Bt cotton and maize on nontarget invertebrates.

Science 2007;316:1475–7.

2. Glare TR, O’Callaghan M. Bacillus thuringiensis: Biology,

Ecology and Safety. John Wiley and Sons, NY; 2000. 350 p.

3. Grafius EJ, Douches DS. The present and future role of

insect-resistant genetically modified potato cultivars in IPM.

In: Romeis J, Shelton AM, Kennedy GG, editors.

Integration of Insect-Resistant Genetically Modified Crops

with IPM Systems. Springer, Berlin, Germany; 2008.

p. 195–221.

4. James C. Global Status of Commercialized Biothech/GM

Crops: 2007. ISAAA Briefs, No. 37; 2007. Available from: URL:

http://www.isaaa.org/resources/publications/briefs/37/

executivesummary/default.html.

5. Shelton AM, Fuchs M, Shotkoski FA. Transgenic vegetables

and fruits for control of insects and insect-vectored

pathogens. In: Romeis J, Shelton AM, Kennedy GG, editors.

Integration of Insect-Resistant Genetically Modified

Crops with IPM Systems. Springer, Berlin, Germany; 2008.

p. 249–72.

6. Cohen MB, Chen M, Bentur JS, Heong KL, Ye GY. Bt rice in

Asia: potential benefits, impacts and sustainability. In: Romeis

J, Shelton AM, Kennedy GG, editors. Integration of Insect-

Resistant Genetically Modified Crops with IPM Systems.

Springer, Berlin, Germany; 2008. p. 223–48.

7. Malone LA, Gatehouse AMR, Barratt BIP. Beyond Bt:

alternative strategies for insect-resistant genetically modified

crops. In: Romeis J, Shelton AM, Kennedy GG, editors.

Intergration of Insect-Resistant Genetically Modified

Crops with IPM Systems. Springer, Berlin, Germany; 2008.

p. 357–418.

8. Boisvert M, Boisvert J. Effects of Bacillus thuringiensis var.

israelensis on target and nontarget organisms: a review of

laboratory and field experiments. Biocontrol Science and

Technology 2000;10:517–61.

9. Federici BA. Effects of Bt on non-target organisms. Journal of

New Seeds 2003;5:11–30.

10. Schuler TH, Poppy GM, Kerry BR, Denholm I. Potential side

effects of insect-resistant transgenic plants on arthropod

natural enemies. Trends in Biotechnology 1999;17:210–6.

11. Cannon RJC. Bt transgenic crops: risks and benefits.

Integrated Pest Management Reviews 2000;5:151–73.

12. Wolfenbarger LL, Phifer PR. The ecological risks and

benefits of genetically engineered plants. Science

2000;290:2088–93.

13. Edge JM, Benedict JH, Carroll JP, Reding HK. Bollgard cotton:

an assessment of global economic, environmental and social

benefits. Journal of Cotton Science 2001;5:121–36.

http://www.cababstractsplus.org/cabreviews

Steven E. Naranjo 13



14. Groot AT, Dicke M. Insect-resistant transgenic plants in a

multi-trophic context. Plant Journal 2002;31:387–406.

15. Marvier M. Improving risk assessment for nontarget

safety of transgenic crops. Ecological Applications

2002;12:1119–24.

16. National Research Council. Environmental Effects of

Transgenic Plants: The Scope and Adequacy of Regulation.

Committee on Environmental Impacts Associated with

Commercialization of Transgenic Plants and Board on

Agriculture and Natural Resources Division on Earth and

Life Studies, Natural Research Council. National Academy

Press, Washington, DC. 2002.

17. Shelton AM, Zhao JZ, Roush RT. Economic, ecological, food

safety, and social consequences of the deployment of Bt

transgenic plants. Annual Review of Entomology

2002;47:845–81.

18. Conner AJ, Glare TR, Nap JP. The release of genetically

modified crops into the environment. Part II Overview of

ecological risk assessment. Plant Journal 2003;33:19–46.

19. Benedict JH, Ring DR. Transgenic crops expressing Bt

proteins: current status, challenges and outlook. In: Koul O,

Dhaliwal GS, editors. Transgenic Crop Protection:

Concepts and Strategies. Science Publishers, Inc., Enfield,

NH, USA; 2004. p. 15–84.

20. Pilson D, Prendeville HR. Ecological effects of transgenic

crops and the escape of transgenes into wild populations.

Annual Review of Ecology Evolution and Systematics

2004;35:149–74.

21. Lovei GL, Arpaia S. The impact of transgenic plants on

natural enemies: a critical review of laboratory studies.

Entomologia Experimentalis et Applicata 2005;114:1–14.

22. O’Callaghan M, Glare TR, Burgess EPJ, Malone LA.

Effects of plants genetically modified for insect resistance on

nontarget organisms. Annual Review of Entomology

2005;50:271–92.

23. Chen M, Ye G, Liu Z, Yao H, Chen X, Shen Z, et al. Field

assessment of the effects of transgenic rice expressing a

fused gene of cry1Ab and cry1Ac from Bacillus thuringiensis

Berliner on nontarget planthopper and leafhopper populations.

Environmental Entomology 2006;35:127–34.

24. Herdt RW. Biotechnology in agriculture. Annual Review of

Environment and Resources 2006;31:265–95.

25. Romeis J, Meissle M, Bigler F. Transgenic crops expressing

Bacillus thuringiensis toxins and biological control. Nature

Biotechnology 2006;24:63–71.

26. Sanvido O, Romeis J, Bigler F. Ecological impacts of

genetically modified crops: ten years of field research and

commercial cultivation. Advances in Biochemical Engineering

and Biotechnology 2007;107:235–78.

27. Romeis J, Shelton AM, Kennedy GC editors. Integration of

Insect-Resistant Genetically Modified Crops with IPM

Systems. Springer, Berlin, Germany; 2008.
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